New York University

School of Continuing Education

Information Technologies Institute

Course Title:	Java for C++ Programmers		Course Number: X.52.9269

Instructor: Nigel Lui					Session: 4	Date: 6/11/1998

Networking with Socket

What Is a Socket?

Normally, a server runs on a specific computer and has a socket that is bound to a specific port number. The server just waits, listening to the socket for a client to make a connection request.

On the client-side: The client knows the hostname of the machine on which the server is running and the port number to which the server is connected. To make a connection request, the client tries to rendezvous with the server on the server's machine and port.

�

Figure 4.1

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new socket bound to a different port. It needs a new socket (and consequently a different port number) so that it can continue to listen to the original socket for connection requests while tending to the needs of the connected client.

�

Figure 4.2

On the client side, if the connection is accepted, a socket is successfully created and the client can use the socket to communicate with the server. Note that the socket on the client side is not bound to the port number used to rendezvous with the server. Rather, the client is assigned a port number local to the machine on which the client is running.

The client and server can now communicate by writing to or reading from their sockets.

Definition: A socket is one endpoint of a two-way communication link between two programs running on the network. A socket is bound to a port number so that the TCP layer can identify the application that data is destined to be sent.

The java.net package in the Java platform provides a class, Socket, that implements one side of a two-way connection between your Java program and another program on the network. The Socket class sits on top of a platform-dependent implementation, hiding the details of any particular system from your Java program. By using the java.net.Socket class instead of relying on native code, your Java programs can communicate over the network in a platform-independent fashion.

Additionally, java.net includes the ServerSocket class, which implements a socket that servers can use to listen for and accept connections to clients. This lesson shows you how to use the Socket and ServerSocket classes.

If you are trying to connect to the Web, the URL class and related classes (URLConnection, URLEncoder) are probably more appropriate than the socket classes. In fact, URLs are a relatively high-level connection to the Web and use sockets as part of the underlying implementation. See Working with URLs for information about connecting to the Web via URLs.

Reading from and Writing to a Socket

Let's look at a simple example that illustrates how a program can establish a connection to a server program using the Socket class and then, how the client can send data to and receive data from the server through the socket.

The example program implements a client, EchoClient, that connects to the Echo server. The Echo server simply receives data from its client and echoes it back. The Echo server is a well-known service that clients can rendezvous with on port 7.

EchoClient creates a socket thereby getting a connection to the Echo server. It reads input from the user on the standard input stream, and then forwards that text to the Echo server by writing the text to the socket. The server echoes the input back through the socket to the client. The client program reads and displays the data passed back to it from the server:

Listing 4.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36�
import java.io.*;

import java.net.*;

public class EchoClient {

 public static void main(String[] args) throws IOException {

 Socket echoSocket = null;

 PrintWriter out = null;

 BufferedReader in = null;

 try {

 echoSocket = new Socket("godzilla", 7);

 out = new PrintWriter(echoSocket.getOutputStream(), true);

 in = new BufferedReader(new InputStreamReader(echoSocket.getInputStream()));

 } catch (UnknownHostException e) {

 System.err.println("Don't know about host: godzilla.");

 System.exit(1);

 } catch (IOException e) {

 System.err.println("Couldn't get I/O for the connection to: godzilla.");

 System.exit(1);

 }

 BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in));

 String userInput;

 while ((userInput = stdIn.readLine()) != null) {

 out.println(userInput);

 System.out.println("echo: " + in.readLine());

 }

 out.close();

 in.close();

 stdIn.close();

 echoSocket.close();

 }

}�
�

Note that EchoClient both writes to and reads from its socket, thereby sending data to and receiving data from the Echo server.

Let's walk through the program and investigate the interesting parts. The three statements in the try block of the main method are critical. These lines establish the socket connection between the client and the server and open a PrintWriter and a BufferedReader on the socket:

echoSocket = new Socket("godzilla", 7);

out = new PrintWriter(echoSocket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(echoSocket.getInputStream()));

The first statement in this sequence creates a new Socket object and names it echoSocket. The Socket constructor used here requires the name of the machine and the port number to which you want to connect. The example program uses the host name godzilla. This is the name of a hypothetical machine on our local network. When you type in and run this program on your machine, change the host name to the name of a machine on your network. Make sure that the name you use is the fully qualified IP name of the machine to which you want to connect. The second argument is the port number. Port number 7 is the port on which the Echo server listens. PrintWriter on it. Similarly, the third statement gets the socket's input stream and opens a BufferedReader on it. The example uses readers and writers so that it can write Unicode characters over the socket.

To send data through the socket to the server, EchoClient simply needs to write to the PrintWriter. To get the server's response, EchoClient reads from the BufferedReader. The rest of the program achieves this. If you are not yet familiar with the Java platform's I/O classes, you may wish to read Reading and Writing.

The next interesting part of the program is the while loop. The loop reads a line at a time from the standard input stream and immediately sends it to the server by writing it to the PrintWriter connected to the socket:

String userInput;

while ((userInput = stdIn.readLine()) != null) {

 out.println(userInput);

 System.out.println("echo: " + in.readLine());

}

The last statement in the while loop reads a line of information from the BufferedReader connected to the socket. The readLine method waits until the server echoes the information back to EchoClient. When readline returns, EchoClient prints the information to the standard output.

The while loop continues until the user types an end-of-input character. That is, EchoClient reads input from the user, sends it to the Echo server, gets a response from the server, and displays it, until it reaches the end-of-input. The while loop then terminates and the program continues, executing the next four lines of code:

out.close();

in.close();

stdIn.close();

echoSocket.close();

These lines of code fall into the category of housekeeping. A well-behaved program always cleans up after itself, and this program is well-behaved. These statements close the readers and writers connected to the socket and to the standard input stream, and close the socket connection to the server. The order here is important. You should close any streams connected to a socket before you close the socket itself.

This client program is straightforward and simple because the Echo server implements a simple protocol. The client sends text to the server, and the server echoes it back. When your client programs are talking to a more complicated server such as an HTTP server, your client program will also be more complicated. However, the basics are much the same as they are in this program:

Open a socket.

Open an input stream and output stream to the socket.

Read from and write to the stream according to the server's protocol.

Close the streams.

Close the socket.

Only step 3 differs from client to client, depending on the server. The other steps remain largely the same.

Writing the Server Side of a Socket

This section shows you how to write a server and the client that goes with it. The server in the client/server pair serves up Knock Knock jokes. Knock Knock jokes are favored by children and are usually vehicles for bad puns. They go like this:

Server: "Knock knock!"

Client: "Who's there?"

Server: "Dexter."

Client: "Dexter who?"

Server: "Dexter halls with boughs of holly."

Client: "Groan."

The example consists of two independently running Java programs: the client program and the server program. The client program is implemented by a single class, KnockKnockClient, and is very similar to the EchoClient example from the previous section. The server program is implemented by two classes: KnockKnockServer and KnockKnockProtocol, KnockKnockServer contains the main method for the server program and performs the work of listening to the port, establishing connections, and reading from and writing to the socket. KnockKnockProtocol serves up the jokes. It keeps track of the current joke, the current state (sent knock knock, sent clue, and so on), and returns the various text pieces of the joke

depending on the current state. This object implements the protocol-the language that the client and server have agreed to use to communicate.

The following section looks in detail at each class in both the client and the server and then shows you how to run them.

The Knock Knock Server

This section walks through the code that implements the Knock Knock server program. Here is the complete source for the KnockKnockServer class.

Listing 4.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44�
import java.net.*;

import java.io.*;

public class KnockKnockServer {

 public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = null;

 try {

 serverSocket = new ServerSocket(4444);

 } catch (IOException e) {

 System.err.println("Could not listen on port: 4444.");

 System.exit(1);

 }

 Socket clientSocket = null;

 try {

 clientSocket = serverSocket.accept();

 } catch (IOException e) {

 System.err.println("Accept failed.");

 System.exit(1);

 }

 PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true);

 BufferedReader in = new BufferedReader(

 new InputStreamReader(

 clientSocket.getInputStream()));

 String inputLine, outputLine;

 KnockKnockProtocol kkp = new KnockKnockProtocol();

 outputLine = kkp.processInput(null);

 out.println(outputLine);

 while ((inputLine = in.readLine()) != null) {

 outputLine = kkp.processInput(inputLine);

 out.println(outputLine);

 if (outputLine.equals("Bye."))

 break;

 }

 out.close();

 in.close();

 clientSocket.close();

 serverSocket.close();

 }

}�
�

The server program begins by creating a new ServerSocket object to listen on a specific port (see the statement in bold in the following code segment). When writing a server, choose a port that is not already dedicated to some other service. KnockKnockServer listens on port 4444 because 4 happens to be my favorite number and port 4444 is not being used for anything else in my environment:

try {

 serverSocket = new ServerSocket(4444);

} catch (IOException e) {

 System.out.println("Could not listen on port: 4444");

 System.exit(-1);

}

ServerSocket is a java.net class that provides a system-independent implementation of the server side of a client/server socket connection. The constructor for ServerSocket throws an exception if it can't listen on the specified port (for example, the port is already being used). In this case, the KnockKnockServer has no choice but to exit.

If the server successfully connects to its port, then the ServerSocket object is successfully created and the server continues to the next step--accepting a connection from a client:

Socket clientSocket = null;

try {

 clientSocket = serverSocket.accept();

} catch (IOException e) {

 System.out.println("Accept failed: 4444");

 System.exit(-1);

}

The accept method waits until a client starts up and requests a connection on the host and port of this server (in this example, the server is running on the hypothetical machine godzilla on port 4444). When a connection is requested and successfully established, the accept method returns a new Socket object which is bound to a new port. The server can communicate with the client over this new Socket and continue to listen for client connection requests on the ServerSocket bound to the original, predetermined port. This particular version of the program doesn't listen for more client connection requests. However, a

modified version of the program is provided in Supporting Multiple Clients.

After the server successfully establishes a connection with a client, it communicates with the client using this code:

PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true);

BufferedReader in = new BufferedReader(new BufferedOutputStream(

			clientSocket.getInputStream()));

String inputLine, outputLine;

// initiate conversation with client

KnockKnockProtocol kkp = new KnockKnockProtocol();

outputLine = kkp.processInput(null);

out.println(outputLine);

while ((inputLine - in.readLine()) != null) {

 outputLine = kkp.processInput(inputLine);

 out.println(outputLine);

 if outputLine.equals("Bye."))

 break;

}

This code:

Gets the socket's input and output stream and opens readers and writers on them.

Initiates communication with the client by writing to the socket .

Communicates with the client by reading from and writing to the socket (the while loop).

Step 1 is already familiar. Step 2 is shown in bold and is worth a few comments. The bold statements in the code segment above initiate the conversation with the client. The code creates a KnockKnockProtocol object-the object that keeps track of the current joke, the current state within the joke, and so on.

After the KnockKnockProtocol is created, the code calls KnockKnockProtocol's processInput method to get the first message that the server sends to the client. For this example, the first thing that the server says

is "Knock! Knock!" Next, the server writes the information to the PrintWriter connected to the client socket, thereby sending the message to the client.

Step 3 is encoded in the while loop. As long as the client and server still have something to say to each other, the server reads from and writes to the socket, sending messages back and forth between the client and the server.

The server initiated the conversation with a "Knock! Knock!" so afterwards the server must wait for the client to say "Who's there?" As a result, the while loop iterates on a read from the input stream. The readLine method waits until the client responds by writing something to its output stream (the server's input stream). When the client responds, the server passes the client's response to the KnockKnockProtocol object and asks the KnockKnockProtocol object for a suitable reply. The server immediately sends the reply to the client via the output stream connected to the socket, using a call to println. If the server's response generated from the KnockKnockServer object is "Bye." this indicates that the client doesn't want any more jokes and the loop quits.

The KnockKnockServer class is a well-behaved server, so the last several lines of this section of KnockKnockServer clean up by closing all of the input and output streams, the client socket, and the server socket:

out.close();

in.close();

clientSocket.close();

serverSocket.close();

The Knock Knock Protocol

The KnockKnockProtocol class implements the protocol that the client and server use to communicate. This class keeps track of where the client and the server are in their conversation and serves up the server's response to the client's statements. The KnockKnockServer object contains the text of all the jokes and makes sure that the client gives the proper response to the server's statements. It wouldn't do to have the client say "Dexter who?" when the server says "Knock! Knock!"

All client/server pairs must have some protocol by which they speak to each other; otherwise, the data that passes back and forth would be meaningless. The protocol that your own clients and servers use depends entirely on the communication required by them to accomplish the task.

Listing 4.3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62�
import java.net.*;

import java.io.*;

public class KnockKnockProtocol {

 private static final int WAITING = 0;

 private static final int SENTKNOCKKNOCK = 1;

 private static final int SENTCLUE = 2;

 private static final int ANOTHER = 3;

 private static final int NUMJOKES = 5;

 private int state = WAITING;

 private int currentJoke = 0;

 private String[] clues = { "Turnip", "Little Old Lady", "Atch", "Who", "Who" };

 private String[] answers = { "Turnip the heat, it's cold in here!",

 "I didn't know you could yodel!",

 "Bless you!",

 "Is there an owl in here?",

 "Is there an echo in here?" };

 public String processInput(String theInput) {

 String theOutput = null;

 if (state == WAITING) {

 theOutput = "Knock! Knock!";

 state = SENTKNOCKKNOCK;

 } else if (state == SENTKNOCKKNOCK) {

 if (theInput.equalsIgnoreCase("Who's there?")) {

 theOutput = clues[currentJoke];

 state = SENTCLUE;

 } else {

 theOutput = "You're supposed to say \"Who's there?\"! " +

 "Try again. Knock! Knock!";

 }

 } else if (state == SENTCLUE) {

 if (theInput.equalsIgnoreCase(clues[currentJoke] + " who?")) {

 theOutput = answers[currentJoke] + " Want another? (y/n)";

 state = ANOTHER;

 } else {

 theOutput = "You're supposed to say \"" +

 clues[currentJoke] +

 " who?\"" +

 "! Try again. Knock! Knock!";

 state = SENTKNOCKKNOCK;

 }

 } else if (state == ANOTHER) {

 if (theInput.equalsIgnoreCase("y")) {

 theOutput = "Knock! Knock!";

 if (currentJoke == (NUMJOKES - 1))

 currentJoke = 0;

 else

 currentJoke++;

 state = SENTKNOCKKNOCK;

 } else {

 theOutput = "Bye.";

 state = WAITING;

 }

 }

 return theOutput;

 }

}�
�

The Knock Knock Client

The KnockKnockClient class implements the client program that speaks to the KnockKnockServer. KnockKnockClient is based on the EchoClient program in the previous section, Reading from and Writing to a Socket and should be somewhat familiar to you. But we'll go over the program anyway and look at

what's happening in the client in the context of what's going on in the server.

Listing 4.4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46�
import java.io.*;

import java.net.*;

public class KnockKnockClient {

 public static void main(String[] args) throws IOException {

 Socket kkSocket = null;

 PrintWriter out = null;

 BufferedReader in = null;

 try {

 kkSocket = new Socket("localhost", 4444);

 out = new PrintWriter(kkSocket.getOutputStream(), true);

 in = new BufferedReader(new InputStreamReader(kkSocket.getInputStream()));

 } catch (UnknownHostException e) {

 System.err.println("Don't know about host: localhost.");

 System.exit(1);

 } catch (IOException e) {

 System.err.println("Couldn't get I/O for the connection to: localhost.");

 System.exit(1);

 }

 BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in));

 String fromServer;

 String fromUser;

 while ((fromServer = in.readLine()) != null) {

 System.out.println("Server: " + fromServer);

 if (fromServer.equals("Bye."))

 break;

 fromUser = stdIn.readLine();

 if (fromUser != null) {

 System.out.println("Client: " + fromUser);

 out.println(fromUser);

 }

 }

 out.close();

 in.close();

 stdIn.close();

 kkSocket.close();

 }

}�
�

When you start the client program, the server should already be running and listening to the port, waiting for a client to request a connection. So, the first thing the client program does is to open a socket that is connected to the server running on the hostname and port specified:

kkSocket = new Socket("godzilla", 4444);

out = new PrintWriter(kkSocket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(kkSocket.getInputStream()));

When creating its socket, KnockKnockClient uses the host name godzilla, the name of a hypothetical machine on our network. When you type in and run this program, change the host name to the name of a machine on your network. This is the machine on which you will run the KnockKnockServer.

The KnockKnockClient program also specifies the port number 4444 when creating its socket. This is a remote port number--the number of a port on the server machine -- and is the port to which KnockKnockServer is listening. The client's socket is bound to any available local port--a port on the client machine. Remember that the server gets a new socket as well. That socket is bound to a local port number (not port 4444) on its machine. The server's socket and the client's socket are connected.

Next comes the while loop that implements the communication between the client and the server. The server speaks first, so the client must listen first. The client does this by reading from the input stream attached to the socket. If the server does speak, it says "Bye." and the client exits the loop. Otherwise, the client displays the text to the standard output and then reads the response from the user, who types into the standard input. After the user types a carriage return, the client sends the text to the server through the output stream attached to the socket.

while ((fromServer = in.readLine()) != null) {

 System.out.println("Server: " + fromServer);

 if (fromServer.equals("Bye."))

 break;

 fromUser = stdIn.readLine();

 if (fromUser != null) {

 System.out.println("Client: " + fromUser);

 out.println(fromUser);

 }

}

The communication ends when the server asks if the client wishes to hear another joke, the client says no, and the server says "Bye."

In the interest of good housekeeping, the client closes its input and output streams and the socket:

out.close();

in.close();

stdIn.close();

kkSocket.close();

Running the Programs

You must start the server program first. To do this, run the server program using the Java interpreter, just as you would any other Java application. Remember to run the server on the machine that the client program specifies when it creates the socket.

Next, run the client program. Note that you can run the client on any machine on your network; it does not have to run on the same machine as the server.

If you are too quick, you might start the client before the server has a chance to initialize itself and begin listening on the port. If this happens, you will see a stack trace from the client. If this happens, just restart the client.

If you try to start a second client while the first client is connected to the server, the second client just hangs. The next section, Supporting Multiple Clients, talks about supporting multiple clients.

When you successfully get a connection between the client and server, you will see the following text displayed on your screen:

Server: Knock! Knock!

Now, you must respond with:

Who's there?

The client echoes what you type and sends the text to the server. The server responds with the first line of one of the many Knock Knock jokes in its repertoire. Now your screen should contain this (the text you typed is in bold):

Server: Knock! Knock!

Who's there?

Client: Who's there?

Server: Turnip

Now, you respond with:

Turnip who?

Again, the client echoes what you type and sends the text to the server. The server responds with the punch line. Now your screen should contain this:

Server: Knock! Knock!

Who's there?

Client: Who's there?

Server: Turnip

Turnip who?

Client: Turnip who?

Server: Turnip the heat, it's cold in here! Want another? (y/n)

If you want to hear another joke, type y; if not, type n. If you type y, the server begins again with "Knock! Knock!" If you type n, the server says "Bye." Thus causing both the client and the server to exit.

If at any point you make a typing mistake, the KnockKnockServer object catches it and the server responds with a message similar to this:

Server: You're supposed to say "Who's there?"!

The server then starts the joke over again:

Server: Try again. Knock! Knock!

Note that the KnockKnockProtocol object is particular about spelling and punctuation but not about capitalization.

Supporting Multiple Clients

To keep the KnockKnockServer example simple, we designed it to listen for and handle a single connection request. However, multiple client requests can come into the same port and, consequently, into the same ServerSocket. Client connection requests are queued at the port, so the server must accept the connections sequentially. However, the server can service them simultaneously through the use of threads - one thread per each client connection.

The basic flow of logic in such a server is this:

while (true)

 accept a connection ;

 create a thread to deal with the client ;

end while

The thread reads from and writes to the client connection as necessary.

Listing 4.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21�
import java.net.*;

import java.io.*;

public class KKMultiServer {

 public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = null;

 boolean listening = true;

 try {

 serverSocket = new ServerSocket(4444);

 } catch (IOException e) {

 System.err.println("Could not listen on port: 4444.");

 System.exit(-1);

 }

 while (listening)

 new KKMultiServerThread(serverSocket.accept()).start();

 serverSocket.close();

 }

}�
�

Listing 4.6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39�
import java.net.*;

import java.io.*;

public class KKMultiServerThread extends Thread {

 private Socket socket = null;

 public KKMultiServerThread(Socket socket) {

 super("KKMultiServerThread");

 this.socket = socket;

 }

 public void run() {

 try {

 PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

 BufferedReader in = new BufferedReader(

 new InputStreamReader(

 socket.getInputStream()));

 String inputLine, outputLine;

 KnockKnockProtocol kkp = new KnockKnockProtocol();

 outputLine = kkp.processInput(null);

 out.println(outputLine);

 while ((inputLine = in.readLine()) != null) {

 outputLine = kkp.processInput(inputLine);

 out.println(outputLine);

 if (outputLine.equals("Bye"))

 break;

 }

 out.close();

 in.close();

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}�
�

What Is a Datagram?

Clients and servers that communicate via a reliable channel, such as a URL or a socket, have a dedicated point-to-point channel between themselves, or at least the illusion of one. To communicate, they establish a connection, transmit the data, and then close the connection. All data sent over the channel is received in the same order in which it was sent. This is guaranteed by the channel.

In contrast, applications that communicate via datagrams send and receive completely independent packets of information. These clients and servers do not have and do not need a dedicated point-to-point channel. The delivery of datagrams to their destinations is not guaranteed. Nor is the order of their arrival.

Definition: A datagram is an independent, self-contained message sent over the network whose arrival, arrival time, and content are not guaranteed.

The java.net package contains two classes to help you write Java programs that use datagrams to send and receive packets over the network: DatagramSocket, DatagramPacket, and MulticastSocket. An application can send and receive DatagramPackets through a DatagramSocket. In addition, DatagramPackets can be broadcast to multiple recipients all listening to a MulticastSocket.

Writing a Datagram Client and Server

The example featured in this section consists of two applications: a client and a server. The server continuously receives datagram packets over a datagram socket. Each datagram packet received by the server indicates a client request for a quotation. When the server receives a datagram, it replies by sending a datagram packet that contains a one-line "quote of the moment" back to the client.

The client application in this example is fairly simple. It sends a single datagram packet to the server indicating that the client would like to receive a quote of the moment. The client then waits for the server to send a datagram packet in response.

Two classes implement the server application: QuoteServer and QuoteServerThread. A single class implements the client application: QuoteClient.

The QuoteServer Class

The QuoteServer class, shown here in its entirety, contains a single method: the

main method for the quote server application. The main method simply creates

a new QuoteServerThread object and starts it:

Listing 4.7

1

2

3

4

5�
public class QuoteServer {

 public static void main(String[] args) throws java.io.IOException {

 new QuoteServerThread().start();

 }

}�
�

The QuoteServerThread class implements the main logic of the quote server.

Listing 4.8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70�
import java.io.*;

import java.net.*;

import java.util.*;

public class QuoteServerThread extends Thread {

 protected DatagramSocket socket = null;

 protected BufferedReader in = null;

 protected boolean moreQuotes = true;

 public QuoteServerThread() throws IOException {

 this("QuoteServerThread");

 }

 public QuoteServerThread(String name) throws IOException {

 super(name);

 socket = new DatagramSocket(4445);

 try {

 in = new BufferedReader(new FileReader("one-liners.txt"));

 } catch (FileNotFoundException e) {

 System.err.println("Could not open quote file. Serving time instead.");

 }

 }

 public void run() {

 while (moreQuotes) {

 try {

 byte[] buf = new byte[256];

 // receive request

 DatagramPacket packet = new DatagramPacket(buf, buf.length);

 socket.receive(packet);

 // figure out response

 String dString = null;

 if (in == null)

 dString = new Date().toString();

 else

 dString = getNextQuote();

 buf = dString.getBytes();

 // send the response to the client at "address" and "port"

 InetAddress address = packet.getAddress();

 int port = packet.getPort();

 packet = new DatagramPacket(buf, buf.length, address, port);

 socket.send(packet);

 } catch (IOException e) {

 e.printStackTrace();

 moreQuotes = false;

 }

 }

 socket.close();

 }

 protected String getNextQuote() {

 String returnValue = null;

 try {

 if ((returnValue = in.readLine()) == null) {

 in.close();

 moreQuotes = false;

 returnValue = "No more quotes. Goodbye.";

 }

 } catch (IOException e) {

 returnValue = "IOException occurred in server.";

 }

 return returnValue;

 }

}�
�

The QuoteClient Class

The QuoteClient class implements a client application for the QuoteServer. This application sends a request to the QuoteServer, waits for the response, and, when the response is received, displays it to the standard output. Let's look at the code in detail.

Listing 4.9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32�
import java.io.*;

import java.net.*;

import java.util.*;

public class QuoteClient {

 public static void main(String[] args) throws IOException {

 if (args.length != 1) {

 System.out.println("Usage: java QuoteClient <hostname>");

 return;

 }

 // get a datagram socket

 DatagramSocket socket = new DatagramSocket();

 // send request

 byte[] buf = new byte[256];

 InetAddress address = InetAddress.getByName(args[0]);

 DatagramPacket packet = new DatagramPacket(buf, buf.length, address, 4445);

 socket.send(packet);

 // get response

 packet = new DatagramPacket(buf, buf.length);

 socket.receive(packet);

 // display response

 String received = new String(packet.getData(), 0);

 System.out.println("Quote of the Moment: " + received);

 socket.close();

 }

}�
�

Running the Server and Client

After you've successfully compiled the server and the client programs, you run them. You have to run the server program first. Just use the Java interpreter and specify the QuoteServer class name.

Once the server has started, you can run the client program. Remember to run the client program with one command-line argument: the name of the host on which the QuoteServer is running.

After the client sends a request and receives a response from the server, you should see output similar to this:

Quote of the Moment: Good programming is 99% sweat and 1% coffee.

Broadcasting to Multiple Recipient

In addition to DatagramSocket, which lets programs send packets to one another, java.net includes a class called MulticastSocket. This kind of socket is used on the client-side to listen for packets that the server broadcasts to multiple clients.

Let's rewrite the quote server so that it broadcasts DatagramPackets to multiple recipients. Instead of sending quotes to a specific client that makes a request, the new server now needs to broadcast quotes at a regular interval. The client needs to be modifies sot that it passively listens for quotes and does so on a MulticastSocket.

This example is comprised of three classes which are modifications of the three classes from the previous example: MulticastServer, MulticastServerThread, and MulticastClient. This discussion highlights the interesting parts of these classes.

Listing 4.10

1

2

3

4

5�
public class MulticastServer {

 public static void main(String[] args) throws java.io.IOException {

 new MulticastServerThread().start();

 }

}�
�

The multicast datagram socket class is useful for sending and receiving IP multicast packets. A MulticastSocket is a (UDP) DatagramSocket, with additional capabilities for joining "groups" of other

multicast hosts on the internet.

A multicast group is specified by a class D IP address, those in the range 224.0.0.1 to 239.255.255.255, inclusive, and by a standard UDP port number. One would join a multicast group by first creating a MulticastSocket with the desired port, then invoking the joinGroup(InetAddress groupAddr) method:

Listing 4.11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43�
import java.io.*;

import java.net.*;

import java.util.*;

public class MulticastServerThread extends QuoteServerThread {

 private long FIVE_SECONDS = 5000;

 public MulticastServerThread() throws IOException {

 super("MulticastServerThread");

 }

 public void run() {

 while (moreQuotes) {

 try {

 byte[] buf = new byte[256];

 // construct quote

 String dString = null;

 if (in == null)

 dString = new Date().toString();

 else

 dString = getNextQuote();

 buf = dString.getBytes();

 // send it

 InetAddress group = InetAddress.getByName("230.0.0.1");

 DatagramPacket packet = new DatagramPacket(buf, buf.length, group, 4446);

 socket.send(packet);

 // sleep for a while

 try {

 sleep((long)(Math.random() * FIVE_SECONDS));

 } catch (InterruptedException e) { }

 } catch (IOException e) {

 e.printStackTrace();

 moreQuotes = false;

 }

 }

 socket.close();

 }

}�
�

The interesting change is how the DatagramPacket is constructed, in particular, the InetAddress and port used to construct the DatagramPacket. Recall that the previous example retrieved the InetAddress and port number from the packet sent to the server from the client. This was because the server needed to reply directly to the client. Now, the server needs to address multiple clients. So this time both the InetAddress and the port number are hard-coded.

The hard-coded port number is 4446 (the client must have a MulticastSocket bound to this port). The hard-coded InetAddress of the DatagramPacket is "230.0.0.1" and is a group identifier (rather than the Internet address of the machine on which a single client is running). This particular address was arbitrarily chosen from the reserved for this purpose.

Created in this way, the DatagramPacket is destined for all clients listening to port number 4446 who are member of the "230.0.0.1" group.

To listen to port number 4446, the new client program just created its MulticastSocket with that port number. To become a member of the "230.0.0.1" group, the client calls the MulticastSocket's joinGroup method with the InetAddress that identifies the group. Now, the client is set up to receive DatagramPackets destined for the port and group specified. Here's the relevant code from the new client program (which was also rewritten to passively receive quotes rather than actively request them).

Listing 4.12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30�
import java.io.*;

import java.net.*;

import java.util.*;

public class MulticastClient {

 public static void main(String[] args) throws IOException {

 MulticastSocket socket = new MulticastSocket(4446);

 InetAddress address = InetAddress.getByName("230.0.0.1");

 socket.joinGroup(address);

 DatagramPacket packet;

 // get a few quotes

 for (int i = 0; i < 5; i++) {

 byte[] buf = new byte[256];

 packet = new DatagramPacket(buf, buf.length);

 socket.receive(packet);

 String received = new String(packet.getData());

 System.out.println("Quote of the Moment: " + received);

 }

 socket.leaveGroup(address);

 socket.close();

 }

}�
�

Try this: Run the MulticastServer and several clients. Watch how the clients all get the same quotes.

Homework #4

Read the API documentation of the package java.net @ http://www.javasoft.com/products/jdk/1.1/docs/api/Package-java.net.html, in case you didn’t download it.

Read the official online Java tutorial on networking @ http://java.sun.com/docs/books/tutorial/networking/, in case you didn’t download it again!

Implement a client/server application:

User can use a client to enter a message, the message will be sent to the server and the server will forward the message to the other client. See the figure below

�

===================================

Final Project (suggestion)

A Multi-user chat application

implement a server application that listen to a port by using Socket

implement a client application with GUI front-end that provide the user a text field to enter a message.

the user of the client application can enter a message with the client application, and the application will send the message to the server.

once the server receives the message, it will forward the message to the other client.

HINTS: When the client application starts up, it has to register with the server, so the server can keep track of how many clients are currently running. It also needs to send a message to the server before going down.

�PAGE �1�

